Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtre
1.
Nat Nanotechnol ; 17(9): 993-1003, 2022 09.
Article Dans Anglais | MEDLINE | ID: covidwho-2000903

Résumé

The global emergency caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic can only be solved with effective and widespread preventive and therapeutic strategies, and both are still insufficient. Here, we describe an ultrathin two-dimensional CuInP2S6 (CIPS) nanosheet as a new agent against SARS-CoV-2 infection. CIPS exhibits an extremely high and selective binding capacity (dissociation constant (KD) < 1 pM) for the receptor binding domain of the spike protein of wild-type SARS-CoV-2 and its variants of concern, including Delta and Omicron, inhibiting virus entry and infection in angiotensin converting enzyme 2 (ACE2)-bearing cells, human airway epithelial organoids and human ACE2-transgenic mice. On association with CIPS, the virus is quickly phagocytosed and eliminated by macrophages, suggesting that CIPS could be successfully used to capture and facilitate virus elimination by the host. Thus, we propose CIPS as a promising nanodrug for future safe and effective anti-SARS-CoV-2 therapy, and as a decontamination agent and surface-coating material to reduce SARS-CoV-2 infectivity.


Sujets)
, Nanostructures , Angiotensin-converting enzyme 2 , Animaux , Humains , Souris , Nanostructures/usage thérapeutique , Liaison aux protéines , SARS-CoV-2 , Glycoprotéine de spicule des coronavirus/génétique , Glycoprotéine de spicule des coronavirus/métabolisme
2.
Talanta ; 245: 123486, 2022 Aug 01.
Article Dans Anglais | MEDLINE | ID: covidwho-1796081

Résumé

Cancer is the leading cause of death in many countries. The development of new methods for early screening of cancers is highly desired. Targeted metallomics has been successfully applied in the screening of cancers through quantification of elements in the matrix, which is time consuming and requires combined techniques for the quantification due to the large elemental difference in the matrix. This work proposed a non-targeted metallomics (NTM) approach through synchrotron radiation based X-ray fluorescence (SRXRF) and machine learning algorithms (MLAs) for the screening of cancers. One hundred serum samples were collected from cancer patients who were confirmed by pathological examination with 100 matched serum samples from healthy volunteers. The serum samples were studied with SRXRF and the spectra from both groups were directly clarified through MLAs, which did not require the quantification of elements. The NTM approach through SRXRF and MLAs is fast (5s for data collection for one sample) and accurate (over 96% accuracy) for cancer screening. Besides, this approach can also identify the most affected elements in cancer samples like Ca, Zn and Ti as we found, which may shed lights on the drug development for cancer treatment. This NTM approach can also be applied through commercially available XRF instruments or ICP-TOF-MS with MLAs. It has the potential for the screening and prediction of other diseases like COVID-19 and neurodegenerative diseases in a high throughput and least invasive way.


Sujets)
COVID-19 , Tumeurs , COVID-19/diagnostic , Dépistage précoce du cancer , Humains , Apprentissage machine , Tumeurs/imagerie diagnostique , Spectrométrie d'émission X , Synchrotrons , Rayons X
3.
Chemical science ; 13(11):3216-3226, 2022.
Article Dans Anglais | EuropePMC | ID: covidwho-1782305

Résumé

The ongoing COVID-19 pandemic caused by SARS-CoV-2 highlights the urgent need to develop sensitive methods for diagnosis and prognosis. To achieve this, multidimensional detection of SARS-CoV-2 related parameters including virus loads, immune response, and inflammation factors is crucial. Herein, by using metal-tagged antibodies as reporting probes, we developed a multiplex metal-detection based assay (MMDA) method as a general multiplex assay strategy for biofluids. This strategy provides extremely high multiplexing capability (theoretically over 100) compared with other reported biofluid assay methods. As a proof-of-concept, MMDA was used for serologic profiling of anti-SARS-CoV-2 antibodies. The MMDA exhibits significantly higher sensitivity and specificity than ELISA for the detection of anti-SARS-CoV-2 antibodies. By integrating the high dimensional data exploration/visualization tool (tSNE) and machine learning algorithms with in-depth analysis of multiplex data, we classified COVID-19 patients into different subgroups based on their distinct antibody landscape. We unbiasedly identified anti-SARS-CoV-2-nucleocapsid IgG and IgA as the most potently induced types of antibodies for COVID-19 diagnosis, and anti-SARS-CoV-2-spike IgA as a biomarker for disease severity stratification. MMDA represents a more accurate method for the diagnosis and disease severity stratification of the ongoing COVID-19 pandemic, as well as for biomarker discovery of other diseases. A MMDA platform is developed by using metal-tagged antibodies as reporting probes combined with machine learning algorithms, as a general strategy for highly multiplexed biofluid assay.

4.
Adv Sci (Weinh) ; 9(14): e2104333, 2022 05.
Article Dans Anglais | MEDLINE | ID: covidwho-1782562

Résumé

Coronavirus disease 2019 (COVID-19) remains a global public health threat. Hence, more effective and specific antivirals are urgently needed. Here, COVID-19 hyperimmune globulin (COVID-HIG), a passive immunotherapy, is prepared from the plasma of healthy donors vaccinated with BBIBP-CorV (Sinopharm COVID-19 vaccine). COVID-HIG shows high-affinity binding to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein, the receptor-binding domain (RBD), the N-terminal domain of the S protein, and the nucleocapsid protein; and blocks RBD binding to human angiotensin-converting enzyme 2 (hACE2). Pseudotyped and authentic virus-based assays show that COVID-HIG displays broad-spectrum neutralization effects on a wide variety of SARS-CoV-2 variants, including D614G, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Kappa (B.1.617.1), Delta (B.1.617.2), and Omicron (B.1.1.529) in vitro. However, a significant reduction in the neutralization titer is detected against Beta, Delta, and Omicron variants. Additionally, assessments of the prophylactic and treatment efficacy of COVID-HIG in an Adv5-hACE2-transduced IFNAR-/- mouse model of SARS-CoV-2 infection show significantly reduced weight loss, lung viral loads, and lung pathological injury. Moreover, COVID-HIG exhibits neutralization potency similar to that of anti-SARS-CoV-2 hyperimmune globulin from pooled convalescent plasma. Overall, the results demonstrate the potential of COVID-HIG against SARS-CoV-2 infection and provide reference for subsequent clinical trials.


Sujets)
Vaccins contre la COVID-19 , COVID-19 , Globulines , Animaux , COVID-19/thérapie , Globulines/usage thérapeutique , Humains , Immunisation passive , Souris , SARS-CoV-2 , Glycoprotéine de spicule des coronavirus ,
5.
Chem Sci ; 13(11): 3216-3226, 2022 Mar 16.
Article Dans Anglais | MEDLINE | ID: covidwho-1764224

Résumé

The ongoing COVID-19 pandemic caused by SARS-CoV-2 highlights the urgent need to develop sensitive methods for diagnosis and prognosis. To achieve this, multidimensional detection of SARS-CoV-2 related parameters including virus loads, immune response, and inflammation factors is crucial. Herein, by using metal-tagged antibodies as reporting probes, we developed a multiplex metal-detection based assay (MMDA) method as a general multiplex assay strategy for biofluids. This strategy provides extremely high multiplexing capability (theoretically over 100) compared with other reported biofluid assay methods. As a proof-of-concept, MMDA was used for serologic profiling of anti-SARS-CoV-2 antibodies. The MMDA exhibits significantly higher sensitivity and specificity than ELISA for the detection of anti-SARS-CoV-2 antibodies. By integrating the high dimensional data exploration/visualization tool (tSNE) and machine learning algorithms with in-depth analysis of multiplex data, we classified COVID-19 patients into different subgroups based on their distinct antibody landscape. We unbiasedly identified anti-SARS-CoV-2-nucleocapsid IgG and IgA as the most potently induced types of antibodies for COVID-19 diagnosis, and anti-SARS-CoV-2-spike IgA as a biomarker for disease severity stratification. MMDA represents a more accurate method for the diagnosis and disease severity stratification of the ongoing COVID-19 pandemic, as well as for biomarker discovery of other diseases.

6.
Nano Today ; 36: 101037, 2021 Feb.
Article Dans Anglais | MEDLINE | ID: covidwho-939172

Résumé

The coronavirus disease 2019 (COVID-19) pandemic represents a severe global health threat. Selenium (Se), as one of the essential trace elements in human body, is well known for its antioxidant and immunity-boosting capabilities that induce a strong antiviral effect. In response to the global pandemic, we highlight here the current status of Se in combating different viruses, as well as the potential application of nano-selenium (nanoSe) in combating COVID-19.

SÉLECTION CITATIONS
Détails de la recherche